联系我们
显微镜科学与教学知识中心

显微镜科学与教学知识中心

显微镜科学与教学知识中心

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!

工作流程与协议:如何使用徕卡激光显微切割系统和 Qiagen 试剂盒进行成功的 RNA 分析

激光显微切割(LMD)允许分离单个细胞或染色体,是一种在下游分析核酸内容(通过 PCR 或测序技术)之前进行样本准备的成熟技术。在这里,我们描述了徕卡LMD系统与 Qiagen 试剂盒成功结合的过程,即使在少量样本中也能有效提取核酸。所呈现的工作流程和协议为成功的LMD应用提供了基础,确保在过程中不损失核酸数量,并保持 RNA 的完整性,突显了产品的高质量。
[Translate to chinese:] Schematic graph of the light path in a Spalt-Ultramikroskop.

共聚焦成像和光片成像

光学成像仪器可以放大微小物体,聚焦遥远星体,揭示肉眼看不见的细节。但是,它有一个众所周知且令人烦恼的问题:景深有限。我们的眼睛(也是一种光学成像装置)也有同样的困扰,但我们的大脑在信号到达意识认知之前会巧妙地移除所有不在焦点上的信息。

Universal PAINT – Dynamic Super-Resolution Microscopy

Super-resolution microscopy techniques have revolutionized biology for the last ten years. With their help cellular components can now be visualized at the size of a protein. Nevertheless, imaging…

冷冻透射电子显微镜的投入式冷冻技术:应用

低温下观察完全含水、未染色样本的透射电子显微镜(cryo TEM)是结构生物学、细胞生物学、药理学和其他科学分支的通用工具。通过将标本放入冷冻剂中进行超快速冷冻(投入式冻结)是一种常用的方法,用于制备在透射电镜观察的各种标本。本文是对投入式冷冻的补充,介绍了在不同领域使用投入式冷冻标本的三种冷冻TEM应用。

神经外科和眼科中的融合光学 - 更大三维聚焦区域

神经外科医生和眼科医生处理精细结构、深或狭窄的腔体以及具有至关重要功能的微小结构。因此,手术区域的清晰三维视图对手术结果和患者安全至关重要。到目前为止,增加景深以获得更大三维聚焦区域只能通过降低分辨率来实现。一项新技术能够克服这一挑战。

用徕卡EM ACE600电子束对DNA进行甘油喷雾/铂金低角度旋转遮光

生物学中,甘油喷雾/低角度旋转遮光[1]是和其他技术结合,将直径较小导致染色不足的结构可视化的准备技术。该方法常用于含有卷曲螺旋结构域的蛋白质或DNA的标本。
[Translate to chinese:] Alexander von Inostranzeff (1843–1919)

比对显微镜 125 年的发展历程

要科学准确地对两个物体进行光学比较,必须能够同时观察它们。特别是在比较只能借助光学放大系统才能观察到的微小物体时,更是如此。如果你只有一台显微镜,而且必须交替观察两个物体,那么你就需要有出色的记忆力,而且永远不能排除判断错误的风险,尤其是在检查结构、颜色或轮廓只有细微差别的物体时。这种认识促使圣彼得堡的地质学教授亚历山大-冯-伊诺斯特兰泽夫(Alexander von…

Preparation of Laser Microdissected Plant Cell and Tissue Material for Microchemical Analysis

Secondary plant metabolites are involved in various plant physiological and biochemical processes, allowing plants to interact successfully with their biotic and abiotic environment. Distribution…
[Translate to chinese:] Acousto-optics, sketch

声光调制在全光谱型激光共聚焦显微镜系统的应用

荧光最显著的特征是照射光(激发光)和检测光(发射光)颜色之间的偏移,称为斯托克斯位移。因此,在荧光成像中,不仅要将激发光和发射光的相应波长过滤出来,还需要将激发光从发射光中分离。过去,通常用平面光学元件,包括灰色或彩色滤光片和反射镜进行滤光和分光。虽然有多种平面光学元件可供使用,但固定的规格和低切换效率使其在使用上具有局限性,并且采用不同角度或梯度的涂层作为激发光和发射光的调谐方法也被证实并不可行…
Scroll to top