显微镜科学与教学知识中心

显微镜科学与教学知识中心

显微镜科学与教学知识中心

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!

THUNDER成像:高效、灵活、易操作,让您的日常成像工作流更轻松

本次网络研讨会将展示 THUNDER 在许多不同生命科学应用中的多功能性和性能:从计数视网膜切片中的细胞核和癌组织切片中的 RNA 分子,到监测阿拉伯芥幼苗中的钙波等等。

清晰对比、无雾的 3D 样本实时图像

历史上,宽场显微镜并不适合对大样本/标本体积进行成像。图像背景(BG)主要来源于观察样本的失焦区域,显著降低了成像系统的对比度、有效动态范围和最大可能的信噪比(SNR)。记录的图像显示出典型的雾霭,并且在许多情况下,无法提供进一步分析所需的细节水平。处理厚三维样本的研究人员要么使用替代显微镜方法,要么尝试通过后处理一系列图像来减少雾霭。

Live Cell Isolation by Laser Microdissection

Laser microdissection is a tool for the isolation of homogenous cell populations from their native niches in tissues to downstream molecular assays. Beside its routine use for fixed tissue sections,…
[Translate to chinese:] Mammalian cell culure. Phase contrast and fluorescence image.

哺乳动物细胞培养的介绍

哺乳动物细胞培养是生命科学的基本支柱之一。如果不具备在实验室中培养细胞的能力,那么细胞生物学、免疫学、肿瘤研究等学科很难实现快速发展。本文概述了哺乳动物细胞培养系统,可以根据其形态、细胞类型和组织对其进行分类。此外,还介绍了适宜的细胞生长条件以及需要使用何种显微镜来观察细胞。
[Translate to chinese:] HeLa cells stimulated with LPS. Image has been subjected to deconvolution.

显微镜下的慢性炎症

在慢性炎症的过程中,身体的某些部位会反复发炎。许多人类疾病都是如此。在宽场光学显微镜的帮助下,可以对从细胞水平到整个生物体的潜在过程进行检查。本文介绍了几种宽场显微镜应用,如免疫荧光、活细胞成像、组织学和比率分析,以深入了解慢性炎症的发展、相关疾病及其治疗。
Transgenic zebrafish larva where fluorescent proteins label the heart muscle blue, blood and blood vessels red, and all circulatory system cells green. Image recorded with a M205 FA microscope.

Imaging and Analyzing Zebrafish, Medaka, and Xenopus

Discover how to image and analyze zebrafish, medaka, and Xenopus frog model organisms efficiently with a microscope for developmental biology applications from this article.
[Translate to chinese:] Fluorescence stereo microscope image of anesthetized Mediterranean fruit flies recorded with a M205 stereo microscope.

研究果蝇(黑腹果蝇Drosophila melanogaster)

由于每个实验室的需求可能会有很大的差异,本文展示了科学家和技术人员研究果蝇并使用不同显微镜设置的的实例。此外,基于不同果蝇实验室的经验介绍了推荐的工作流程。本文可以作为建立或扩展果蝇实验室时的参考或指南。

通用 PAINT – 动态超分辨率显微镜

超分辨率显微技术在过去十年中彻底革新了生物学研究。这些技术让我们能够以接近蛋白质大小的分辨率观察细胞内的各个组成部分。然而,对活细胞进行成像仍然是大多数超分辨率技术面临的挑战。在这种背景下,uPAINT(纳米尺度拓扑成像通用点积累)技术受到了广泛关注。这种单分子方法通过动态成像活细胞中持续标记的任意膜生物分子,实现了超高分辨率成像,并能追踪单个分子的运动轨迹。

2013年诺贝尔生理学或医学奖:囊泡运输调控机制的发现

2013年10月7日,卡罗林斯卡学院诺贝尔组织决定共同授予詹姆斯·E·罗斯曼、兰迪·W·舍克曼和托马斯·C·苏德霍夫2012年诺贝尔生理学或医学奖,以表彰他们“发现了调控囊泡运输的机制,这是细胞内的一个重要运输系统”。
Scroll to top