联系我们
类器官和 3D 细胞培养显微镜解决方案

类器官和3D细胞培养

生命科学研究中最令人振奋的最新进展之一是3D细胞培养系统的发展,例如类器官、球状体或器官芯片模型。 3D细胞培养物是一种人工环境,在这种环境中,细胞能够在三维空间中生长并与周围环境相互作用。 这些环境条件与它们在体内的情况相似。 类器官是一种3D细胞培养物,包含器官特异性细胞类型,可以表现出器官的空间组织和复制器官的某些功能。 类器官重现了一个生理上高度相关的系统,使研究人员能够研究复杂的多维度问题,例如疾病发作、组织再生和器官之间的相互作用。 光学显微镜是用类器官研究复杂的相互作用与关系的重要方法。

徕卡成像解决方案支持这些多功能样本的研究,使用这些系统可进行深度快速成像,适合终点测量或者通过活细胞成像进行动力学研究。

联系我们

联系当地专家,获取有关符合您需求和预算的专家建议

优化3D模型的成像效率

徕卡显微系统开发了许多方法,为类器官和其他3D细胞培养模型的成像提供更高的性能。 

从传统的方法(如宽场或共聚焦显微成像),到更先进的成像方法(如多光子成像或光片),徕卡显微系统的技术可呈现3D细胞培养物内的细胞微小细节和组织整体结构。

徕卡显微系统提供多种解决方案,可以更简单、更快速、更容易地对3D细胞培养物成像。

克服类器官成像中的挑战

成像是研究类器官和球状体等3D细胞培养物的关键技术。

类器官的有效成像构成一系列的新挑战,因为它们包含很大的体积。 类器官可以被固定、进行免疫标记,并使用透明技术进行研究,以便对其3D结构成像。 通常,这些研究使用共聚焦显微镜进行,因为对于宽场系统而言,对细胞层多于2-3个的培养物成像可能具有很大的挑战性,宽场系统固有的模糊现象会掩盖感兴趣的信号。

类器官也可以用来研究动态过程。 活体类器官研究会面临典型的成像问题,例如光毒性和低信噪比,特别是在样本深度成像时。 最近,各种快速采集显微成像方法(如 FLIM 或光片)在活体类器官研究中受到青睐,因为使用这些方法时可以不改变样本的生理机能。

相关文章

阅读我们的最新文章

徕卡显微系统的知识门户网站 提供有关显微镜学的科学研究资料和教学材料。 网站内容专门面向初学者、经验丰富的从业者和科学家,为他们的日常工作和实验提供支持。

更多文章
Immunofluorescence image of a mouse enodmetrial organoid stained with CK14 and DAPI

Advancing Uterine Regenerative Therapies with Endometrial Organoids

Prof. Kang's group investigates important factors that determine the uterine microenvironment in which embryo insertion and pregnancy are successfully maintained. They are working to develop new…
Dapi – Nucleus, GFP – Plasma Membrane, Thickness 100µm, 63x objektive, 469 Z planes, 2 channels, THUNDER Imager 3D Cell Culture. Courtesy M.Sc. Dana Krauß, Medical University of Vienna (Austria).

您的 3D 类器官成像和分析工作流程效率如何?

类器官模型已经改变了生命科学研究,但优化图像分析协议仍然是一个关键挑战。本次网络研讨会探讨了类器官研究的简化工作流程,首先是实时的三维细胞培养检查,接下来是高速、高分辨率的三维成像,生成清晰的图像和更纯净的数据,以便对生长速率、细胞迁移和三维细胞相互作用等参数进行准确地人工智能分割和量化,从而实现更深入的洞察。
[Translate to chinese:] The role of extracellular signalling mechanisms in the correct development of the human brain

在神经发育过程中,细胞是如何相互交流的?

细胞间通信是大脑发育过程中一个必不可少的过程,它受到多种因素的影响,包括细胞的形态、粘附分子、局部细胞外基质和分泌囊泡。在本次网络研讨会上,您将了解到对这些机制更深入的理解是如何推动对神经发育障碍的理解的。
[Translate to chinese:] 40x magnification of organoids cluster taken on Mateo TL.Cell type: esophageal squamous carcinoma; scale  bar 15µm. Courtesy of bioGenous, China.

克服类器官三维细胞培养中的观察挑战

类器官在细胞生物学和药物发现中至关重要,因为它们能够模拟体内细胞的复杂性和结构,有助于癌症等微环境至关重要的疾病研究。类器官可根据患者的基因型进行定制,这也有助于个性化医学研究。
[Translate to chinese:] Murine esophageal organoids (DAPI, Integrin26-AF 488, SOX2-AF568) imaged with the THUNDER Imager 3D Cell Culture. Courtesy of Dr. F.T. Arroso Martins, Tamere University, Finland.

如何深入了解类器官和细胞球模型

在本电子书中,您将了解3D细胞培养模型(如类器官和细胞球)成像的关键注意事项。探索创新型显微镜解决方案,来实时记录类器官和细胞球的动态成像过程。
[Translate to chinese:] Brain organoid section (DAPI) acquired using THUNDER Imager Live Cell. Image courtesy of Janina Kaspar and Irene Santisteban, Schäfer Lab, TUM.

研究大脑健康的成像类器官模型

小胶质细胞是特化的脑驻留免疫细胞,在大脑发育、平衡和疾病中发挥着至关重要的作用。然而,到目前为止,模拟人脑环境与小胶质细胞之间相互作用的能力还非常有限。
[Translate to chinese:] Branched organoid growing in collagen where the Nuclei are labeled blue. To detect the mechanosignaling process, the YAP1 is labeled green.

检查癌症类器官的发展进程

德国慕尼黑工业大学的Andreas Bausch实验室研究细胞和生物体中不同结构和功能形成的细胞和生物物理机制。他的团队设计了新的策略、方法和分析工具,以量化微米和纳米等级的发展机制和动态过程。关键研究领域包括干细胞和类器官,从乳腺类器官到胰腺癌类器官,以更好地了解疾病模型。
[Translate to chinese:] Cancer cells

铁代谢在癌症进展中的作用

铁代谢在癌症发展和演进过程中发挥着重要作用,可以调节免疫反应了解铁离子如何影响癌症和免疫系统,有助于开发新的癌症治疗方法。

利用微流控技术保持活细胞成像期间的细胞健康

点播视频——在这集MicaCam中,我们将使用微流控技术探索对细胞形态的剪切应力,检查3D细胞培养期间营养物质补充对细胞生长的影响,并观察长期培养期间球状体的发育。

基于荧光寿命的成像图库

共聚焦显微镜技术依赖于荧光探针的有效激发以及由荧光过程所发射的光子的高效收集。荧光特性之一是其发射波长(即荧光团的光谱特征)。另一个更为强大但尚未充分探索的特性是荧光寿命(荧光团在激发态的持续时间)。基于荧光寿命的信息增加了共聚焦实验的一个额外维度,能够揭示荧光团微环境的信息,并允许对光谱特性相重叠的物种进行多重分析。
Mouse lymphnode acquired with a THUNDER Imager 3D Cell Culture. Image courtesy of Dr. Selina Keppler, Munich, Germany.

Image Gallery: THUNDER Imager

To help you answer important scientific questions, THUNDER Imagers eliminate the out-of-focus blur that clouds the view of thick samples when using camera-based fluorescence microscopes. They achieve…
[Translate to chinese:] Elucidate cancer development on sub-cellular level by in-vivo like tumor spheroid models.

利用光片显微镜改进三维细胞生物学工作流程

了解癌症发生过程中的亚细胞机制对于癌症治疗至关重要。常见的细胞模型涉及作为单层生长的癌细胞。然而,这种方法忽视了肿瘤细胞与其周围微环境之间的三维相互作用。为了贴近自然环境理解恶性肿瘤的发展和进程,对癌症微环境的详细表征至关重要。
[Translate to chinese:] Mammalian cell culure. Phase contrast and fluorescence image.

哺乳动物细胞培养的介绍

哺乳动物细胞培养是生命科学的基本支柱之一。如果不具备在实验室中培养细胞的能力,那么细胞生物学、免疫学、肿瘤研究等学科很难实现快速发展。本文概述了哺乳动物细胞培养系统,可以根据其形态、细胞类型和组织对其进行分类。此外,还介绍了适宜的细胞生长条件以及需要使用何种显微镜来观察细胞。
Scroll to top