显微镜知识库

显微镜知识库

显微镜知识库

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!

THUNDER成像:高效、灵活、易操作,让您的日常成像工作流更轻松

本次网络研讨会将展示 THUNDER 在许多不同生命科学应用中的多功能性和性能:从计数视网膜切片中的细胞核和癌组织切片中的 RNA 分子,到监测阿拉伯芥幼苗中的钙波等等。
Fluorescence microscopy image on the left with no distinction between the fluorescent signal and background autofluorescence. FLIM was used in the image on the right to differentiate autofluorescence in chloroplasts (blue) from the desired fluorescent signal from the cell membrane (green).

学习如何从共聚焦图像中去除自发荧光

了解自发荧光的常见原因以及如何将其从共聚焦显微镜图像中去除。根据应用的不同,自发荧光的来源可能有很多种,但幸运的是,同样也有很多的解决方案--从更换介质到使用荧光寿命成像和近红外染料。

深组织成像的多光子显微镜原理

当成像厚样本时,荧光显微镜达到了其极限。可见光在生物组织中会被强烈散射,因此荧光成像的深度通常限制在大约100微米。

受激拉曼散射显微镜探测神经退行性疾病

Despite decades of research, the molecular mechanisms underlying some of the most severe neurodegenerative diseases, such as Alzheimer’s or Parkinson’s, remain poorly understood. The progression of…

改善冷冻电子断层扫描工作流程

徕卡显微系统有限公司和赛默飞世尔科技有限公司合作开发了一个整条技术路线的冷冻电子断层扫描工作流程。它确保从通过THUNDER成像仪EM冷冻CLEM(也可选择新版的CORAL Cryo冷冻共聚焦CLEM)预选与我们的EM GP2的玻璃化冷冻到Thermo Scientific Krios™ G3i Cryo TEM的3D图像重建的完全整合。所有仪器之间的无缝通信能够获得可靠的结果和可重现的实验。
Roland A. Fleck

专家在低温扫描电镜工作流程高压冷冻和冷冻断裂方面的知识

深入了解实验室工作方法并了解在EM样本制备过程中低温扫描电镜研究的优势。了解如何将高压冷冻、冷冻断裂和冷冻传送添加到低温扫描电镜工作流程中,以及徕卡组合如何确保这些不同步骤之间的兼容性。

通过光遗传和电刺激技术研究纳米桥接结构和动力学

纳米级超微结构信息通常是由经固定和处理样品的静态图像获得的。但是,这些静态图像只是不断变化的动态结构中的一个瞬间。因此,如何探索动态过程中的特定时间点,是纳米级超微结构研究的一个重大挑战。通过光遗传或电刺激技术,并结合毫秒级样品玻璃化技术探索纳米级超微结构,是一种解决上述问题具有前景的技术。在本应用白皮书的第一部分中,我们将从实际应用角度讨论光刺激辅助的样品玻璃化工作流程。
Zebrafish Whole Brain imaging with Leica SP8 spectral confocal laser scanning microscope

斑马鱼大脑高分辨率全器官成像

结构信息是理解复杂生物系统的关键,而脊椎动物的中枢神经系统是最复杂的生物结构之一。要想从发育中的斑马鱼身上分离出一个完整的大脑,我们需要覆盖大约10平方毫米的区域,深度在毫米范围内。通常,低倍透镜不能提供足够的分辨率来揭示神经组织中复杂结构之间的相互作用。此外,由于散射过程,使用共聚焦显微镜在致密生物组织内成像深度通常限制在大约10微米。

什么是光谱探测器(SP 探测器)?

徕卡显微系统的 SP 探测器是一种用于点扫描显微镜(尤其是共聚焦显微镜)的复合检测单元。SP 探测器可将光分成多达 5 个光谱带。这些光谱带是独立的,并且在整个可见光谱内可以连续调节。每个光谱带中的光由光传感器检测:光电倍增管(PMT)或混合探测器(HyD)。
Scroll to top