联系我们
显微镜科学与教学知识中心

显微镜科学与教学知识中心

显微镜科学与教学知识中心

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
Mouse retina was fixed and stained by following reagents: anti-CD31 antibody (green): Endothelia cells, IsoB4 (red): Blood vessels, and microglia anti-GFAP antibody (blue): Astrocytes Sample courtesy by Jeremy Burton, PhD and Jiyeon Lee, PhD, Genentech Inc., South San Francisco, USA. Imaged by Olga Davydenko, PhD (Leica). Imaged with a THUNDER Imager 3D Cell Culture.

An Introduction to Computational Clearing

Many software packages include background subtraction algorithms to enhance the contrast of features in the image by reducing background noise. The most common methods used to remove background noise…

钢材质量评估过程中人工评级非金属夹杂物(NMI)的挑战

快速、精确和可靠的非金属夹杂物(NMI)评级对钢材质量评估具有重要作用。在钢铁生产和组件制造过程中,非金属夹杂物(NMI)人工评级是一种常用的方法.
Fluorescence microscopy image on the left with no distinction between the fluorescent signal and background autofluorescence. FLIM was used in the image on the right to differentiate autofluorescence in chloroplasts (blue) from the desired fluorescent signal from the cell membrane (green).

学习如何从共聚焦图像中去除自发荧光

了解自发荧光的常见原因以及如何将其从共聚焦显微镜图像中去除。根据应用的不同,自发荧光的来源可能有很多种,但幸运的是,同样也有很多的解决方案--从更换介质到使用荧光寿命成像和近红外染料。

通过光遗传和电刺激技术研究纳米桥接结构和动力学

纳米级超微结构信息通常是由经固定和处理样品的静态图像获得的。但是,这些静态图像只是不断变化的动态结构中的一个瞬间。因此,如何探索动态过程中的特定时间点,是纳米级超微结构研究的一个重大挑战。通过光遗传或电刺激技术,并结合毫秒级样品玻璃化技术探索纳米级超微结构,是一种解决上述问题具有前景的技术。在本应用白皮书的第一部分中,我们将从实际应用角度讨论光刺激辅助的样品玻璃化工作流程。

清晰对比、无雾的 3D 样本实时图像

历史上,宽场显微镜并不适合对大样本/标本体积进行成像。图像背景(BG)主要来源于观察样本的失焦区域,显著降低了成像系统的对比度、有效动态范围和最大可能的信噪比(SNR)。记录的图像显示出典型的雾霭,并且在许多情况下,无法提供进一步分析所需的细节水平。处理厚三维样本的研究人员要么使用替代显微镜方法,要么尝试通过后处理一系列图像来减少雾霭。
Scroll to top