探索微生物世界:三维食品基质中的空间相互作用
Micalis 研究所是与 INRAE、AgroParisTech 和巴黎萨克雷大学合作的联合研究单位。其使命是开发食品微生物学领域的创新研究,以促进健康。在这一系列视频中,Micalis…
通过子宫内膜类器官推进子宫再生疗法
姜教授的团队研究决定胚胎植入和妊娠成功维持的子宫微环境的重要因素。他们正在开发新的治疗策略,以再生子宫内膜功能,帮助患有子宫内膜疾病(如阿什曼综合症)的患者。她的团队将 3D 子宫内膜类器官移植到小鼠模型中,以识别子宫的显著再生能力背后的细胞和分子机制。从这次访谈中了解她的团队正在进行什么样的研究,以及Mica是如何提供帮助的。
在神经发育过程中,细胞是如何相互交流的?
细胞间通信是大脑发育过程中一个必不可少的过程,它受到多种因素的影响,包括细胞的形态、粘附分子、局部细胞外基质和分泌囊泡。在本次网络研讨会上,您将了解到对这些机制更深入的理解是如何推动对神经发育障碍的理解的。
How to Streamline Your Histology Workflows
Streamline your histology workflows. The unique Fluosync detection method embedded into Mica enables high-res RGB color imaging in one shot.
如何深入了解类器官和细胞球模型
在本电子书中,您将了解3D细胞培养模型(如类器官和细胞球)成像的关键注意事项。探索创新型显微镜解决方案,来实时记录类器官和细胞球的动态成像过程。
检查癌症类器官的发展进程
德国慕尼黑工业大学的Andreas Bausch实验室研究细胞和生物体中不同结构和功能形成的细胞和生物物理机制。他的团队设计了新的策略、方法和分析工具,以量化微米和纳米等级的发展机制和动态过程。关键研究领域包括干细胞和类器官,从乳腺类器官到胰腺癌类器官,以更好地了解疾病模型。
如何利用单个系统对组织学荧光样品进行成像
在本集MicaCame中,主持人Lynne Turnbull和Patric Pelzer将带您探寻生物样本染色的历史之旅。他们将解释为什么您通常必须选择为组织学样品或荧光样品选择特定的系统,以及如何利用新的成像技术克服这一点。
如何从根本上简化成像设备的工作流程
本集MicaCam中,来自伦敦大学学院(UCL)的特邀嘉宾Christopher Thrasivoulou博士将从成像设备的角度讨论使用Mica的优势。他将讨论如何简化复杂生物系统的成像工作流程并实现自动化。这有助于科学家节省为获取有意义的量化分析结果而投入的时间和精力。为了举例说明此类工作流程,他还会展示如何对荧光标记的固定斑马鱼胚胎进行多色成像。
FLUOSYNC - 一种快速而温和的多色光谱拆分成像方法
在本白皮书中,我们重点介绍如何使用一种快速、可靠的方法在荧光显微镜下获得高质量多通道图像。FluoSync 将现有的光谱混合拆分方法与同步采集多个光谱探测范围相结合,一步到位。这样,多个荧光团可同时成像,而且无需担心荧光串扰、滤光片的选择或在高速成像下损失重要光子的问题。从样本中获得真正的信号从未如此容易。