显微镜科学与教学知识中心

显微镜科学与教学知识中心

显微镜科学与教学知识中心

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
Type of contamination: spores

颗粒物污染的清洁度分析

许多行业中制造的设备、产品和部件都对污染高度敏感,因此,对技术清洁度有严格的要求。自动颗粒物分析测量系统经常用于产品和部件清洁度的定量验证,以满足汽车、航空航天、微电子、制药和医疗器械等行业的需求。本报告讨论了显微镜测量系统在自动颗粒物分析中的应用。
Protist Paramecium (Paramecium tetraurelia) stained to show the nucleus

复杂3D数据集——人工智能赋能的空间数据分析

本期MicaCam为您提供切实的建议,教您从显微镜图像中提取可发表级别的分析结果。本期的特邀嘉宾来自徕卡显微系统的Luciano Lucas,他将为大家展示如何使用MICA的AI赋能软件进行图像分析。他将深度分析两张MICA的3D成像,探究不同可见生物元素之间的空间关系。本期的最后将会介绍如何创作高保真视频动画以及其他可用于发表文章的结果。
[Translate to chinese:] A stack of lithium-ion batteries

显微镜下的质量控制

电动汽车需求的快速增长是推动市场发展的重要因素,但不是唯一因素,其他因素包括可再生能源装置日益普及(如光伏板),各种医疗设备广泛采用锂离子电池,以及便携式消费电子产品的市场逐步扩大。
[Translate to chinese:] Particles which could be found during cleanliness analysis of parts and components.

汽车零部件的清洁度

本文讨论了ISO 16232标准和VDA 19指南,并简要总结了颗粒物分析方法。它们为汽车零部件在微粒污染方面的清洁度提供了重要标准。此类颗粒物会对产品性能和寿命产生影响。在清洁度分析中,可以使用自动光学显微镜方法来确定颗粒物类型、大小和造成损坏的可能性。有时,需要更多成分信息,才能准确找到潜在的损害和污染源。这时候就需要借助激光光谱(LIBS)或电子显微镜。
[Translate to chinese:] Identification of distinct structures_roundworm_Ascaris_female

从概览中查找相关样本细节

在从图像到图像的搜索中切换到快速查看整个样本概览,并即刻识别重要的样本细节。利用这些知识,使用载玻片、培养皿和多孔板的模板自动设置高分辨率图像采集。LAS X Navigator软件像是样本细胞的GPS,总能为用户指明通向高质量数据的清晰路径,这是生命科学平台STELLARIS和THUNDER成像仪上的一款强大的导航工具。LAS X Navigator支持将宽场、立体或共聚焦实验与舞台应用相结合。
Image of fixed U2OS cell expressing mEmerald-Tomm20 denoised using a 3D RCAN model trained with matching low and high SNR image pairs acquired on an iSIM system.

人工智能显微图像分析-介绍

人工智能引领的显微图像分析和可视化是用于数据驱动型科学发现的一项强大工具。人工智能技术可以帮助研究人员应对具有挑战性的成像应用,让他们能够从图像中获取更多的信息。
Dual color volume rendering of Drp1 oligomers (green) and mito OM (red) in a live U2OS cell

多色四维超分辨光片显微镜

人工智能显微术研讨会主要关注和讨论显微术和生物医学成像领域的最新人工智能技术和工具。在该科学演示中,Yuxuan Zhao展示了如何通过渐进式深度学习策略并结合“双环调制的SPIM”设计改善活细胞中的细胞器三维成像。
Left-hand image: The distribution of immune cells (white) and blood vessels (pink) in white adipose tissue (image captured using the THUNDER Imager 3D Cell Culture). Right-hand image: The same image after automated analysis using Aivia, with each immune cell color-coded based on its distance to the nearest blood vessel. Image courtesy of Dr. Selina Keppler, Munich, Germany.

精确分析宽视野荧光图像

利用荧光显微镜的特异性,即便是使用厚样品和大尺寸样品,研究人员也能够快速轻松地准确观察和分析生物学过程和结构。然而,离焦荧光会提高背景荧光,降低对比度,影响图像的精确分割。THUNDER 与Aivia 的组合可以有效解决这一问题。前者可以消除图像模糊,后者会使用人工智能技术自动分析宽视野图像,提高操作速度和精确性。下面,我们来详细了解下这一协作方法。
[Translate to chinese:]

人工智能驱动的像素分类器

通过人工操作获得可重复的结果需要具备专业知识,而且工作冗长乏味。但是,现在有一种方法可以克服这些挑战,通过加快这种分析来提取图像的真正价值并获得深入的认识。人工智能驱动的像素分类器可快速提供可重复的分割结果,克服了人工操作问题。与基于功能的传统自动化相比,它可以提供更可靠的结果。
Scroll to top