Understanding Motor Sequence Generation Across Spatiotemporal Scales
We have developed a microscopy-based pipeline to characterize a developmentally critical behavior at the pupal stage of development, called the ecdysis sequence. We study brain-wide neuronal activity…
使用增强功能电子显微镜研究大脑切片中的突触
神经科学的一个基本问题就是突触的结构与其功能特性之间有何关系?过去几十年,电生理学揭示了突触传递机制,而电子显微镜(EM)深入探索了突触形态。用于关联突触生理学和超微结构的方法可以追溯到20世纪中叶。目标是获得突触传递的快照,即捕获电子显微照片中的动态过程。
如何利用激光显微切割来改善生物标记物识别与分离
生物标记物可用作特定疾病如癌症的指征标记。这样一来,肿瘤微环境就容易引起人们的警觉。但在肿瘤区域和非肿瘤区域以及肿瘤本身之间存在着明显的分子差异。这些情况只能通过分离这些区域的特定的、微小的部分来破译。
神经外科与抬头显示技术
在以下视频采访中,瑞士巴塞尔大学医院神经外科副主任Raphael Guzman医生谈到了他在使用 ARveo 增强现实显微镜进行头部手术方面的经验。
GLOW800增强现实荧光技术在动脉瘤治疗中的应用
Feres Chaddad博士教授的这个案例研究讨论了通过显微外科夹闭术治疗未破裂的MCA(大脑中动脉)和PCOM(后交通动脉)动脉瘤。这说明了增强现实荧光GLOW800借助实时血管血流增强技术,对大脑解剖结构获取增强实时视图,在动脉瘤夹闭前后为外科医生提供帮助。
通过光遗传和电刺激技术研究纳米桥接结构和动力学
纳米级超微结构信息通常是由经固定和处理样品的静态图像获得的。但是,这些静态图像只是不断变化的动态结构中的一个瞬间。因此,如何探索动态过程中的特定时间点,是纳米级超微结构研究的一个重大挑战。通过光遗传或电刺激技术,并结合毫秒级样品玻璃化技术探索纳米级超微结构,是一种解决上述问题具有前景的技术。在本应用白皮书的第一部分中,我们将从实际应用角度讨论光刺激辅助的样品玻璃化工作流程。
斑马鱼大脑高分辨率全器官成像
结构信息是理解复杂生物系统的关键,而脊椎动物的中枢神经系统是最复杂的生物结构之一。要想从发育中的斑马鱼身上分离出一个完整的大脑,我们需要覆盖大约10平方毫米的区域,深度在毫米范围内。通常,低倍透镜不能提供足够的分辨率来揭示神经组织中复杂结构之间的相互作用。此外,由于散射过程,使用共聚焦显微镜在致密生物组织内成像深度通常限制在大约10微米。
用激光显微切割改进 RNA 分析
帕金森病是一种与大脑多巴胺释放神经元细胞死亡相关的进行性神经退行性疾病。疾病患者和健康个体之间多巴胺释放神经元基因表达差异允许定义靶基因。对于 RNA 分析,单细胞分辨率至关重要。分析混合多巴胺释放神经元和其他细胞会扭曲结果。可以通过激光显微切割(LMD)分离和分析组织中的单个多巴胺能神经元。由于不均匀的细胞群体而导致的误解被排除。
研究秀丽隐杆线虫(C. elegans)
对于在研究实验室或教室中使用秀丽隐杆线虫(C. elegans)的科学家、技术人员和教师,本报告旨在提供有用的信息,以帮助改进他们的日常工作。其目的是使拾取虫体、转基因、RNA干扰、筛选和功能成像等工作步骤更加高效。本报告还详细介绍了配置研究虫实验室或生物教室/教学实验室的各种可能性,并解释了有关研究虫体方法的内容。