Filter articles
标签
产品
Loading...

Mica: A Game-changer for Collaborative Research at Imperial College London
This interview highlights the transformative impact of Mica at Imperial College London. Scientists explain how Mica has been a game-changer, expanding research possibilities and facilitating…
Loading...

How to Study Gene Regulatory Networks in Embryonic Development
Join Dr. Andrea Boni by attending this on-demand webinar to explore how light-sheet microscopy revolutionizes developmental biology. This advanced imaging technique allows for high-speed, volumetric…
Loading...
![[Translate to chinese:] GLP-1 and PYY localized to distinct secretory pools in L-cells. [Translate to chinese:] GLP-1 and PYY localized to distinct secretory pools in L-cells.](/fileadmin/_processed_/0/2/csm_L-cells_366ce08e69.jpg)
前沿成像技术用于 GPCR 信号传导
通过这个按需网络研讨会,提升您的药理研究,了解 GPCR 信号传导,并探索旨在理解 GPCR 信号如何转化为细胞和生理反应的尖端成像技术。发现领先的研究,扩展我们对这些关键通路的认识,以寻找新的药物发现途径。
Loading...
![[Translate to chinese:] Salmonella biofilms 3D render [Translate to chinese:] Salmonella biofilms 3D render](/fileadmin/_processed_/9/6/csm_Salmonella_biofilms_3D_render_b444a820a0.jpg)
探索微生物世界:三维食品基质中的空间相互作用
Micalis 研究所是与 INRAE、AgroParisTech 和巴黎萨克雷大学合作的联合研究单位。其使命是开发食品微生物学领域的创新研究,以促进健康。在这一系列视频中,Micalis…
Loading...
![[Translate to chinese:] Mouse brain (left) microdissected with a 10x objective (upper right). Inspection of the collection device (lower right). [Translate to chinese:] Mouse brain (left) microdissected with a 10x objective (upper right). Inspection of the collection device (lower right).](/fileadmin/_processed_/f/3/csm_Mouse_brain_microdissected_with_10x_objective_5fbd8963bf.jpg)
激光微切割(LMD)促进的分子生物学分析
使用激光微切割(LMD)提取生物分子、蛋白质、核酸、脂质和染色体,以及提取和操作细胞和组织,可以深入了解基因和蛋白质的功能。它在神经生物学、免疫学、发育生物学、细胞生物学和法医学等多个领域有广泛应用,例如癌症和疾病研究、基因改造、分子病理学和生物学。LMD 也有助于研究蛋白质功能、分子机制及其在转导途径中的相互作用。
Loading...
![[Translate to chinese:] AI-based cell counting performed with a phase-contrast and fluorescence image using the Mateo FL microscope. [Translate to chinese:] AI-based cell counting performed with a phase-contrast and fluorescence image using the Mateo FL microscope.](/fileadmin/_processed_/d/9/csm_AI-based_cell_counting_performed_with_phase-contrast_and_fluorescence_image_99cddfa853.jpg)
利用AI增强的细胞计数实现精准和高效
本文描述了利用AI进行精确和高效的细胞计数。准确的细胞计数对于 2D 细胞培养的研究至关重要,例如细胞动力学、药物发现和疾病建模。精确的细胞计数对于确定细胞存活率、增殖速率和实验条件的影响至关重要。这些因素对于可靠和稳健的结果至关重要。描述了基于人工智能的方法如何显著提高细胞计数的准确性和速度,从而对细胞研究产生重大影响。
Loading...
![[Translate to chinese:] AI-based transfection analysis (left) of U2OS cells which were transfected with a fluorescently labelled protein. A fluorescence image of the cells (right) is also shown. The analysis and imaging were performed with Mateo FL. [Translate to chinese:] AI-based transfection analysis (left) of U2OS cells which were transfected with a fluorescently labelled protein. A fluorescence image of the cells (right) is also shown. The analysis and imaging were performed with Mateo FL.](/fileadmin/_processed_/4/c/csm_AI-based_analysis_of_U2OS_cells_transfected_with_fluorescently_labelled_protein_6c19563c6e.jpg)
利用AI实现细胞转染的高效分析
本文探讨了AI(AI)在优化 2D 细胞培养研究中转染效率测量中的关键作用。对于理解细胞机制而言,精确可靠的 2D 细胞培养转染效率测量至关重要。靶向蛋白的高转染效率对于包括活细胞成像和蛋白纯化在内的实验至关重要。手动估计存在不一致性和不可靠性。借助AI的力量,可以实现高效可靠的转染研究。
Loading...
![[Translate to chinese:] Image of confluent cells taken with phase contrast (left) and analyzed for confluency using AI (right). [Translate to chinese:] Image of confluent cells taken with phase contrast (left) and analyzed for confluency using AI (right).](/fileadmin/_processed_/3/6/csm_Confluent_cells_with_phase_contrast_and_analyzed_for_confluency_using_AI_94fe9276f5.jpg)
通过 AI 汇合度提高 2D 细胞培养的精度
本文解释了如何利用人工智能(AI)进行高效、精确的 2D 细胞培养汇合度评估。准确评估细胞培养的汇合度,即表面积覆盖的百分比,对于可靠的细胞研究至关重要。传统方法使用视觉检查或简单算法,使结果不客观和精确,尤其是对于用于药物发现、组织工程和再生医学的复杂细胞系。利用自动化图像分析和深度学习算法的方法提供更好的精度,并可以增强实验结果。
Loading...
![[Translate to chinese:] Intestinal organoids label with FUCCI reporter to follow cell cycle dynamics. Courtesy of Franziska Moos. Liberali lab. FMI Basel (Switzerland). [Translate to chinese:] Intestinal organoids label with FUCCI reporter to follow cell cycle dynamics. Courtesy of Franziska Moos. Liberali lab. FMI Basel (Switzerland).](/fileadmin/_processed_/3/0/csm_Explore-life-events-with-long-term-imaging_a4612dd47d.jpg)
双视野光片显微镜,适用于大型多细胞系统
展示复杂多细胞系统的动态是生物学中的一个基本目标。为了应对在大型时空尺度上进行活体成像的挑战,作者在《自然·方法》杂志上发表的一篇论文中介绍了一种开放式多样本双视野光片显微镜。研究发现,Viventis LS2 Live显微镜在以单细胞分辨率成像大型样本方面取得了显著进展。