显微镜科学与教学知识中心

显微镜科学与教学知识中心

显微镜科学与教学知识中心

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
TIRF Image of Tubulin, YFP, penetration depth: 120 mm

Applications of TIRF Microscopy in Life Science Research

The special feature of TIRF microscopy is the employment of an evanescent field for fluorophore excitation. Unlike standard widefield fluorescence illumination procedures with arc lamps, LEDs or…
[Translate to chinese:] Jellyfish Aequorea Victoria

荧光蛋白--从起步到诺贝尔奖

荧光蛋白是近代荧光显微技术及其现代应用的基础。荧光蛋白的发现和随之而来的发展是上世纪生命科学领域最激动人心的创新之一,也是破译无数自然现象的起点。
[Translate to chinese:] Snapshot from a time lapse of a calcium imaging experiment using the ratiometric calcium indicator Fura-2.

比例成像

细胞的许多基本功能在很大程度上依赖于离子(例如钙、镁)、电压势和细胞质与周围细胞外空间之间的 pH 值的微妙但动态的平衡。这些平衡的变化会显著改变细胞的行为和功能。因此,实时测量细胞内离子、电压和 pH…

Fluorescence Recovery after Photobleaching (FRAP) and its Offspring

FRAP (Fluorescence recovery after photobleaching) can be used to study cellular protein dynamics: For visualization the protein of interest is fused to a fluorescent protein or a fluorescent dye. A…

福斯特共振能量转移 (FRET)

荧光描述的是分子或原子在通过光的吸收激发电子系统后,自发发射光子的过程。发射的光子通常能量较低,因此波长较长(斯托克斯位移)。例如,蓝光激发可能导致绿色发射。如果第二个荧光分子能够吸收绿色光子,则该分子的发射再次发生斯托克斯位移,例如变为红色。这种再吸收在浓密样品中会导致测量误差(部分“内滤”效应)。在低浓度样品中,再吸收非常罕见。

CARS 相干反斯托克斯拉曼散射显微镜简介

共聚焦和多光子成像技术仍然是对生物样本进行复杂研究的首选方法。这些技术可将生物样本中的典型结构或动态过程可视化,并依赖于样本中现有的自发荧光物质或合适的荧光染料。传统染色方法的缺点显而易见:标记耗时,染料会随时间褪色。此外,染料会失去强度并改变样本。染料通常会产生光毒性,对样本造成伤害,进而影响实验结果。CARS(相干反斯托克斯拉曼散射)显微镜是一种无需染料的方法,它通过显示结构分子的内在振动对比…

超分辨率 GSDIM 显微镜

纳米级技术GSDIM(基态耗尽显微镜后单分子返回)提供了细胞内蛋白质和其他生物分子空间排列的详细图像。目前市场上已有首个商业系统(Leica SR GSD),它正在帮助将GSDIM技术推广给更多研究实验室和成像中心的用户。
[Translate to chinese:] Scheme of a 2D mosaic scan. Drosophila melanogaster (eye section)

马赛克图片

共焦激光扫描显微镜被广泛用于生成细胞、亚细胞结构甚至单分子的高分辨率三维图像。不过,越来越多的科学家正将生物研究的重点从单细胞研究扩展到整个器官和生物体,分析动物体内复杂的相互作用。
An ID card which has been tampered with by counterfeiters who inserted a hologram.

Is that Document Genuine or Fake? How do They Identify Fake Documents?

This article shows how forensic experts use microscopy for analysis to identify counterfeit, fake documents, such as ID cards, passports, visas, certificates, etc. Then they know if it is genuine or…
Scroll to top