Filter articles
标签
产品
Loading...

在显微图像分析中运用机器学习技术
显微成像技术最近取得了令人振奋的进展,因此,在生物医学研究中采集的图像数据无论质量还是数量都呈指数级增长。但是,分析日益复杂的大型图像数据集以提取有意义的信息可能是一个既枯燥又耗时的过程,而且容易出现人为误差和偏差,这经常给许多研究人员造成生产效率瓶颈。
Loading...

便捷高效的多色成像新方法
之所以开发将高光谱拆分与相量分析相结合的技术,是为了简化从用多个荧光团标记的样本中采集图像的过程。这种组合方法可消除多通道成像中常见的障碍,例如荧光团串扰和低效的每种信号依次成像(这两种情况都可能导致丢失信息)。此外,它还有助于改进图像采集和数据生成,从而提高实验效率。
Loading...

多通道活细胞成像注意事项
同时多色成像,确保实验成功:活细胞成像实验是了解动态过程的关键。这类实验使我们能够观察记录活体状态下的细胞,而不会可能因固定或终止不同活体过程而产生干扰性伪影。
Loading...

多色显微成像:多通道的重要性
多通道一词是指使用多种荧光染料来检查一个样本中的不同元素。多通道成像可以同时观察相关组分和过程,从而为您的观察添加更多背景信息,最终提供更有意义的结果。它还有助于观察采用其他方法可能会遗漏的相互依赖性。
Loading...

高清检测发育过程中的关键事件
胚胎发育活细胞扩展成像,需要精准平衡曝光量、时间分辨率和空间分辨率,以保持细胞活性。为达到最优的分析结果,从成像数据中获取更多有价值的信息,需要在三个因素之间折中考虑。在本次研讨会中,Aivia团队将展示人工智能如何帮助您进行胚胎发育中的活细胞扩展成像。
Loading...
![[Translate to chinese:] 3D-volume-rendered light-sheet microscope image of a spheroid showing depth coding in different colors. [Translate to chinese:] 3D-volume-rendered light-sheet microscope image of a spheroid showing depth coding in different colors.](/fileadmin/_processed_/4/8/csm_Spheroid_showing_depth_coding_in_different_colors_3D_DLS_ff196ec61f.jpg)
利用DLS对细胞球中的抗癌药物摄取进行成像
细胞球3D细胞培养模型模拟了活组织的生理和功能,使其成为研究肿瘤形态和筛选抗癌药物的有用工具。药物AZD2014是一种公认的哺乳动物雷帕霉素靶蛋白(mTOR)通路抑制剂[1]。mTOR的异常激活会促进肿瘤生长和转移,导致AZD2014进入临床试验作为抗癌分子。其具体的抗肿瘤机制尚不清楚。
Loading...

目视检查面临的主要挑战
本文讨论使用显微镜进行目视检查和返工时遇到的挑战。使用正确类型的显微镜和光学设置对于优化工作流程和增加产量至关重要。使用显微镜进行目视检查和返工时可能遇到的挑战包括确定适当的放大倍率和照明以及有足够大的工作距离。然而,其他关键因素与工作流程优化、有效报告结果和用户培训以及检查过程中的用户舒适度有关。Leica数码和体视显微镜能够提供一系列完整的解决方案,帮助您克服这些挑战,提供更有效的检查和返工。