Mica - 人类海马体
伦敦弗朗西斯·克里克研究所的Piero Rigo对人脑从神经干细胞发展的过程很感兴趣。他的研究工作包括观察18周胎龄时人类新皮质的发育。
在皮质板区域观察到回旋化现象,同时,Ki67、MCM2和SOX2标记的增殖性神经祖细胞充满了脑室-次脑室区。在海马区,高度增殖的神经干细胞(绿色)正在形成齿状回。
使用THUNDER Imagers 拍摄的神经科学图像
了解THUNDER Imager 如何帮助成像人脑皮层区域、阿尔茨海默病斑块和小鼠大脑中的D2多巴胺表达、神经球体和嵴细胞、颅神经发育、轴突再生以及在受伤、疾病或衰老后的大脑功能。
在小胶质细胞(IBA-1+,绿色)中表达 AMPK(红色)的小鼠大脑
在德克萨斯农工大学的Ashok K. Shetty实验室专注于开发能有效增强受伤、疾病或衰老后大脑功能的临床应用策略。一个核心研究方向是通过使用药物和生物制剂刺激大脑神经源区的内源性神经干细胞/祖细胞,为老龄化和阿尔茨海默病模型中的海马神经发生以及记忆和情绪功能的改善开发临床可行策略。实验室成员Maheedhar Kodali博士的最新项目是检测老化过程中小胶质细胞(IBA-1+)中AMPK的表达,以了解他们研究化合物的效果。
使用 STELLARIS 共聚焦平台拍摄的神经科学图像
研究神经科学需要多种共聚焦成像技术,以便于研究神经系统。例如,多光子和光片技术可以研究大脑切片等大型和深层组织;STED超分辨率显微术关键在于解析神经元棘突的结构、突触可塑性以及突触水平上的蛋白质相互作用。荧光寿命成像能够报告钙和pH值的微环境变化。