生命科学研究

生命科学研究

生命科学研究

在生命科学研究中心,您可以掌握最新的关于先进显微镜、成像技术、电镜样品制备和图像分析的前沿应用和创新,涵盖的主题包括细胞生物学、神经科学和癌症研究。希望在这里可以帮助您提升研究能力和精进显微镜在各个科学领域实际应用,并了解徕卡如何通过精确的可视化、图像解读和推进研究进展来赋能您的工作。
U2OS cells stained with Hoechst for nuclei (blue), MitoTracker green (Mitochondria structure, green) and TMRE (active mitochondria, magenta) and SiR for tubulin (red). Simultaneous acquisition of four channel large area overview using Spiral scan feature using the 10x/1.20 CS2 Water MotCORR objective.

如何获得具有完全时空相关性的多标记实验数据

首期MicaCam会聚焦于活细胞实验当中的挑战。我们的主持人Lynne Turnbull和Oliver Schlicker将以活细胞内线粒体活动研究为例,手把手为您展示如何用多孔板培养箱设计您的实验,以及如何分析结果。
Image of fixed U2OS cell expressing mEmerald-Tomm20 denoised using a 3D RCAN model trained with matching low and high SNR image pairs acquired on an iSIM system.

人工智能显微图像分析-介绍

人工智能引领的显微图像分析和可视化是用于数据驱动型科学发现的一项强大工具。人工智能技术可以帮助研究人员应对具有挑战性的成像应用,让他们能够从图像中获取更多的信息。
Dual color volume rendering of Drp1 oligomers (green) and mito OM (red) in a live U2OS cell

多色四维超分辨光片显微镜

人工智能显微术研讨会主要关注和讨论显微术和生物医学成像领域的最新人工智能技术和工具。在该科学演示中,Yuxuan Zhao展示了如何通过渐进式深度学习策略并结合“双环调制的SPIM”设计改善活细胞中的细胞器三维成像。
Colon adenocarcinoma with 13 biomarkers shown

利用Cell DIVE 在单细胞水平上进行超复杂癌症组织分析

能够研究淋巴瘤细胞的异质性如何受到细胞对其微环境反应的影响,尤其是在突变、转录组和蛋白质水平上。蛋白质表达研究提供了有关细胞相互作用性质和蛋白质表达水平的最相关信息。超复合工作流程可用于研究同一癌症组织中的多种蛋白质。
H&E stained micrograph of an intramucosal esophageal adenocarcinoma (left) enhanced with Aivia’s Pixel Classifier (right)

简化癌症生物学图像分析工作流

随着癌症生物学数据集的不断增长,显微图像分割和定量也越来越具挑战性,研究人员被迫在分析工作中耗费大量的时间。
Single timepoint of a drosophilia embryo, 3D object detection

高清检测发育过程中的关键事件

胚胎发育活细胞扩展成像,需要精准平衡曝光量、时间分辨率和空间分辨率,以保持细胞活性。为达到最优的分析结果,从成像数据中获取更多有价值的信息,需要在三个因素之间折中考虑。在本次研讨会中,Aivia团队将展示人工智能如何帮助您进行胚胎发育中的活细胞扩展成像。
Single timepoint of a time-lapse recording of mammary epithelial micro spheroid cultured in 3D highlighting individual mitotic events

在不同尺度下观察复杂的细胞相互作用

细胞间的相互作用很难观察,其中涉及的目标检测和关系衡量尤为棘手。没有简单易用的目标检测及其关系测量方法,很难观察到细胞间的相互作用。
Spontaneous colon adenoma

癌症活体显微镜检查

请加入我们的特邀演讲嘉宾 Jacco van Rheenen 教授的网络研讨会,他将展示他在驱动癌症起始和进展的细胞的身份、行为和命运方面的研究成果。
Aivia_Neuroscience-VBE comparison mouse-1_traced_ROI

自动化加速神经元图像分析

复杂神经投射的检测能力主要取决于大规模神经元网络的精确重建。神经科学研究中的大多数数据析取方法都非常耗时和易错,进而导致进度延误和错误。在本次研讨会中,Aivia将演示如何利用自动化技术提升图像分析工作流的效率
Scroll to top