Filter articles
标签
产品
Loading...

您的 3D 类器官成像和分析工作流程效率如何?
类器官模型已经改变了生命科学研究,但优化图像分析协议仍然是一个关键挑战。本次网络研讨会探讨了类器官研究的简化工作流程,首先是实时的三维细胞培养检查,接下来是高速、高分辨率的三维成像,生成清晰的图像和更纯净的数据,以便对生长速率、细胞迁移和三维细胞相互作用等参数进行准确地人工智能分割和量化,从而实现更深入的洞察。
Loading...
![[Translate to chinese:] AI-based transfection analysis (left) of U2OS cells which were transfected with a fluorescently labelled protein. A fluorescence image of the cells (right) is also shown. The analysis and imaging were performed with Mateo FL. [Translate to chinese:] AI-based transfection analysis (left) of U2OS cells which were transfected with a fluorescently labelled protein. A fluorescence image of the cells (right) is also shown. The analysis and imaging were performed with Mateo FL.](/fileadmin/_processed_/4/c/csm_AI-based_analysis_of_U2OS_cells_transfected_with_fluorescently_labelled_protein_6c19563c6e.jpg)
利用AI实现细胞转染的高效分析
本文探讨了AI(AI)在优化 2D 细胞培养研究中转染效率测量中的关键作用。对于理解细胞机制而言,精确可靠的 2D 细胞培养转染效率测量至关重要。靶向蛋白的高转染效率对于包括活细胞成像和蛋白纯化在内的实验至关重要。手动估计存在不一致性和不可靠性。借助AI的力量,可以实现高效可靠的转染研究。
Loading...
![[Translate to chinese:] Image of confluent cells taken with phase contrast (left) and analyzed for confluency using AI (right). [Translate to chinese:] Image of confluent cells taken with phase contrast (left) and analyzed for confluency using AI (right).](/fileadmin/_processed_/3/6/csm_Confluent_cells_with_phase_contrast_and_analyzed_for_confluency_using_AI_94fe9276f5.jpg)
通过 AI 汇合度提高 2D 细胞培养的精度
本文解释了如何利用人工智能(AI)进行高效、精确的 2D 细胞培养汇合度评估。准确评估细胞培养的汇合度,即表面积覆盖的百分比,对于可靠的细胞研究至关重要。传统方法使用视觉检查或简单算法,使结果不客观和精确,尤其是对于用于药物发现、组织工程和再生医学的复杂细胞系。利用自动化图像分析和深度学习算法的方法提供更好的精度,并可以增强实验结果。
Loading...
![[Translate to chinese:] Multiplexed Cell DIVE imaging of selected clusters and unique cell populations identified in mucinous cystadenocarcinoma of the ovary.](/fileadmin/_processed_/8/6/csm_Cell_populations_identified_in_mucinous_cystadenocarcinoma_of_ovary_ed069f752d.jpg)
肿瘤空间微环境的元癌症分析
研究 TME中肿瘤、基质和免疫细胞之间的相互作用需要采用超多重免疫荧光成像方法。在这里,我们分析了一组Cell Signaling Technology(CST®)抗体,这些抗体针对肺癌、结肠癌和胰腺癌等癌症的标志物。通过Cell DIVE成像和Aivia中的聚类分析,我们确定了TME中的空间相互作用,包括组织特异性和共有的相互作用。
Loading...
![[Translate to chinese:] Multiplexed Cell DIVE imaging of Colon Adenocarcinoma (CAC) tissue. [Translate to chinese:] Multiplexed Cell DIVE imaging of Colon Adenocarcinoma (CAC) tissue. A panel of approximately 30 biomarkers targeted towards various leukocyte lineages, epithelial, stromal, and endothelial cell types was utilized to characterize the tumor immune microenvironment in human colon adenocarcinoma (CAC) tissue.](/fileadmin/_processed_/c/7/csm_Colon_Adenocarcinoma_CAC_tissue_multiplexed_Cell_DIVE_image_33055bc13b.jpg)
通过成像和AI绘制结直肠癌的景观
结肠癌是一种高负担疾病。尽管进行了化疗干预和手术切除,但疾病可能会复发。了解结肠癌微环境对于改善治疗效果是必要的。在这里,我们使用空间生物学方法,通过Cell DIVE和 Aivia可视化结肠腺癌组织中的30个生物标志物。我们探讨了肿瘤组织的血管化、免疫细胞反应和细胞增殖。
Loading...

Transforming Multiplexed 2D Data into Spatial Insights Guided by AI
Aivia 13 handles large 2D images and enables researchers to obtain deep insights into microenvironment surrounding their phenotypes with millions of detected objects and automatic clustering up to 30…
Loading...
![[Translate to chinese:] Single cell datasets [Translate to chinese:] Single cell datasets](/fileadmin/_processed_/8/8/csm_Single_cell_datasets_SPARCS_300efdb37f.jpg)
利用 SPARCS 探索亚细胞空间表型
功能日益强大的显微镜可提供信息丰富的各种细胞表型数据。如果与深度学习的最新进展相结合,这将成为在基因筛选中读出感兴趣的生物表型的理想技术。在本网络讲座中,您将了解到空间分辨 CRISPR 筛选 (SPARCS),这是一种利用自动化高速激光显微切割技术在人类基因组尺度上揭示各种亚细胞空间表型的平台。