生命科学研究

生命科学研究

生命科学研究

在生命科学研究中心,您可以掌握最新的关于先进显微镜、成像技术、电镜样品制备和图像分析的前沿应用和创新,涵盖的主题包括细胞生物学、神经科学和癌症研究。希望在这里可以帮助您提升研究能力和精进显微镜在各个科学领域实际应用,并了解徕卡如何通过精确的可视化、图像解读和推进研究进展来赋能您的工作。

确定颗粒物破坏潜力的三个主要因素

本文讨论了确定颗粒物对汽车和电子行业中的零件和组件的破坏性潜力三个主要因素,分别是颗粒物反射率、高度和成分。光学显微镜可以评估颗粒物的反射率和高度,但颗粒物成分的评估则需要使用激光诱导击穿光谱(LIBS)等光谱分析方法。结合显微镜和LIBS的二合一解决方案可以帮助用户高效确定颗粒物的损坏潜力。
[Translate to chinese:] The various solutions from Leica Microsystems for cleanliness analysis.

选择清洁度分析解决方案需考虑的因素

正确的清洁度分析解决方案对质量控制至关重要。本文介绍了选择适合自身需求的解决方案时应考虑的一些重要因素。这些因素取决于不同的方面,例如:(微电子或汽车)行业,污染物类型、尺寸、成分、材料属性和可能造成的损害等。从基本的清洁度验证到更复杂的分析,有多种基于显微镜和激光光谱的清洁度解决方案可供选择。
Type of contamination: spores

颗粒物污染的清洁度分析

许多行业中制造的设备、产品和部件都对污染高度敏感,因此,对技术清洁度有严格的要求。自动颗粒物分析测量系统经常用于产品和部件清洁度的定量验证,以满足汽车、航空航天、微电子、制药和医疗器械等行业的需求。本报告讨论了显微镜测量系统在自动颗粒物分析中的应用。
[Translate to chinese:] Particles and fibers on a filter which will be counted and analyzed for cleanliness

高效颗粒计数和分析

本报告介绍了使用光学显微镜对零部件的清洁度进行颗粒计数和分析的方法。颗粒计数和分析对汽车和电子行业的质量保证非常重要。颗粒污染可能会导致零部件退化或失效。清洁度分析能快速确定颗粒的大小、类型以及造成损坏的概率。对于更高级的分析(如确定颗粒成分),则可以使用光学显微镜和激光诱导击穿光谱(LIBS)。
[Translate to chinese:] Particles which could be found during cleanliness analysis of parts and components.

汽车零部件的清洁度

本文讨论了ISO 16232标准和VDA 19指南,并简要总结了颗粒物分析方法。它们为汽车零部件在微粒污染方面的清洁度提供了重要标准。此类颗粒物会对产品性能和寿命产生影响。在清洁度分析中,可以使用自动光学显微镜方法来确定颗粒物类型、大小和造成损坏的可能性。有时,需要更多成分信息,才能准确找到潜在的损害和污染源。这时候就需要借助激光光谱(LIBS)或电子显微镜。

控制药品中的微粒污染

本文阐述了如何使用光学显微镜和激光诱导击穿光谱(LIBS)相结合的二合一方法识别制药行业中的微粒污染物。药物和静脉注射溶液等药品的微粒污染可能会导致严重问题。为消除药品微粒污染,最重要的是能够快速、准确地识别污染,甚至能够快速找到污染源。激光诱导击穿光谱可以对材料进行快速的多元素分析。本文介绍的二合一方法可以同时提供目视检查(颜色和形状)和化学(成分)分析,可快速、可靠地识别非监管环境中的微粒污染…

利用光学显微镜和激光光谱的2合1解决方案,对检测材料执行深度剖析和分层分析

除了同时进行视觉和化学检查外,结合了光学显微镜和激光诱导击穿光谱技术(LIBS)的2合1材料分析解决方案还可用于高效执行深度剖析。深度剖析可以成为整个材料分析工作流程的其中一环。本文讨论了用2合1解决方案对涂层材料进行快速深度剖析的方法。检测具有多层涂层,或散装材料内有多种成分的部件或零件时,深度剖析是非常有效的方法。印刷电路板(电子)上的涂层和车辆(汽车和运输)上的油漆和防腐蚀涂层就很适合进行深…

EM TIC 3X进行离子束刻蚀简介

在这篇文章中,您可以了解到如何通过使用EM TIC 3X离子束研磨仪的离子束蚀刻工艺来优化样品的制备质量。文中简介了EM TIC 3X仪器特性,以此解释如何灵活地将该设备应用于各类研究领域的样本制备工作中。本文将帮助读者了解离子束刻蚀工艺的基本原理,及其如何在各种应用中获得高分辨率的SEM图像。本文也将介绍EM TIC…

钢材微结构的目视和化学分析:快速评定钢质量

本文介绍了使用结合光学显微镜和激光诱导击穿光谱仪(LIBS)的二合一解决方案对钢材非金属夹杂物(NMI)进行同步视觉和化学分析的方法。钢是一种在多行业广泛应用的材料。典型的应用领域包括交通(汽车、航空和铁路)、建筑和船舶建造以及能源(油气管道)。在部分高要求应用中,使用创新钢合金以及钢材回收再利用的普及度正在不断上升。钢材的质量主要取决于其成分和微结构(夹杂物、晶粒、沉淀物和其它相)。国际、区域和…
Scroll to top