生命科学研究

生命科学研究

生命科学研究

在生命科学研究中心,您可以掌握最新的关于先进显微镜、成像技术、电镜样品制备和图像分析的前沿应用和创新,涵盖的主题包括细胞生物学、神经科学和癌症研究。希望在这里可以帮助您提升研究能力和精进显微镜在各个科学领域实际应用,并了解徕卡如何通过精确的可视化、图像解读和推进研究进展来赋能您的工作。

荧光活细胞成像技术

理解复杂和/或快速的细胞动力学是探索生物过程的重要一步。因此,如今的生命科学研究越来越关注动态过程,例如细胞迁移,细胞、器官或整个动物的形态变化,以及活体样本中的实时生理事件(如细胞内离子成分的变化)。 满足此类高难度需求的一种方法是采用某些统称为活细胞成像的光学方法。

荧光染料

荧光显微镜的基本原理是借助荧光染料对细胞成分进行高度特异性的可视化观察。这可能是一种与兴趣蛋白质遗传相关的荧光蛋白,如绿色荧光蛋白(GFP)等。如果克隆无法实现,例如在组织学样本上无法实现,则需要使用另一种技术如免疫荧光染色来对兴趣蛋白质进行可视化观察。为此,人们使用抗体来连接不同的荧光染料并将其直接或间接地结合到适当的靶点上。此外,借助荧光染料,荧光显微镜的应用就不再仅局限于蛋白质观察,还能对核…
[Translate to chinese:]

人工智能驱动的像素分类器

通过人工操作获得可重复的结果需要具备专业知识,而且工作冗长乏味。但是,现在有一种方法可以克服这些挑战,通过加快这种分析来提取图像的真正价值并获得深入的认识。人工智能驱动的像素分类器可快速提供可重复的分割结果,克服了人工操作问题。与基于功能的传统自动化相比,它可以提供更可靠的结果。

在显微成像和图像分析中运用人工智能和机器学习技术

Emma Lundberg 教授是瑞典 KTH 皇家理工学院细胞生物学蛋白质组学教授。她还是细胞图谱项目的总监,该项目是瑞典人类蛋白质图谱(HPA)项目不可或缺的组成部分,后者是用于研究人类蛋白质组的开源资源。细胞图谱项目是 HPA 的一部分,提供人类细胞系中 RNA 和蛋白质的表达及时空分布的高分辨率图像。Lundberg…

在显微图像分析中运用机器学习技术

显微成像技术最近取得了令人振奋的进展,因此,在生物医学研究中采集的图像数据无论质量还是数量都呈指数级增长。但是,分析日益复杂的大型图像数据集以提取有意义的信息可能是一个既枯燥又耗时的过程,而且容易出现人为误差和偏差,这经常给许多研究人员造成生产效率瓶颈。

便捷高效的多色成像新方法

之所以开发将高光谱拆分与相量分析相结合的技术,是为了简化从用多个荧光团标记的样本中采集图像的过程。这种组合方法可消除多通道成像中常见的障碍,例如荧光团串扰和低效的每种信号依次成像(这两种情况都可能导致丢失信息)。此外,它还有助于改进图像采集和数据生成,从而提高实验效率。

多通道活细胞成像注意事项

同时多色成像,确保实验成功:活细胞成像实验是了解动态过程的关键。这类实验使我们能够观察记录活体状态下的细胞,而不会可能因固定或终止不同活体过程而产生干扰性伪影。
Image: Adult rat brain. Neurons (Alexa Fluor488, green), Astrocytes (GFAP, red), Nuclei (DAPI, blue). Image courtesy of Prof. En Xu, Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, China.

多色显微成像:多通道的重要性

多通道一词是指使用多种荧光染料来检查一个样本中的不同元素。多通道成像可以同时观察相关组分和过程,从而为您的观察添加更多背景信息,最终提供更有意义的结果。它还有助于观察采用其他方法可能会遗漏的相互依赖性。
H&E stained micrograph of an intramucosal esophageal adenocarcinoma (left) enhanced with Aivia’s Pixel Classifier (right)

简化癌症生物学图像分析工作流

随着癌症生物学数据集的不断增长,显微图像分割和定量也越来越具挑战性,研究人员被迫在分析工作中耗费大量的时间。
Scroll to top