工业

工业

工业

深入探讨有关工业和病理学领域的高效检测、优化工作流程和提高人体工学舒适度的文章和网络研讨会。涉及的主题包括质量控制、材料分析、病理学显微镜等。在这里您可以获得有关使用前沿技术提高生产力和优化质量以及准确地进行病理学诊断的干货。
Protist Paramecium (Paramecium tetraurelia) stained to show the nucleus

复杂3D数据集——人工智能赋能的空间数据分析

本期MicaCam为您提供切实的建议,教您从显微镜图像中提取可发表级别的分析结果。本期的特邀嘉宾来自徕卡显微系统的Luciano Lucas,他将为大家展示如何使用MICA的AI赋能软件进行图像分析。他将深度分析两张MICA的3D成像,探究不同可见生物元素之间的空间关系。本期的最后将会介绍如何创作高保真视频动画以及其他可用于发表文章的结果。
Image of fixed U2OS cell expressing mEmerald-Tomm20 denoised using a 3D RCAN model trained with matching low and high SNR image pairs acquired on an iSIM system.

人工智能显微图像分析-介绍

人工智能引领的显微图像分析和可视化是用于数据驱动型科学发现的一项强大工具。人工智能技术可以帮助研究人员应对具有挑战性的成像应用,让他们能够从图像中获取更多的信息。
Left-hand image: The distribution of immune cells (white) and blood vessels (pink) in white adipose tissue (image captured using the THUNDER Imager 3D Cell Culture). Right-hand image: The same image after automated analysis using Aivia, with each immune cell color-coded based on its distance to the nearest blood vessel. Image courtesy of Dr. Selina Keppler, Munich, Germany.

精确分析宽视野荧光图像

利用荧光显微镜的特异性,即便是使用厚样品和大尺寸样品,研究人员也能够快速轻松地准确观察和分析生物学过程和结构。然而,离焦荧光会提高背景荧光,降低对比度,影响图像的精确分割。THUNDER 与Aivia 的组合可以有效解决这一问题。前者可以消除图像模糊,后者会使用人工智能技术自动分析宽视野图像,提高操作速度和精确性。下面,我们来详细了解下这一协作方法。

人工智能驱动的像素分类器

通过人工操作获得可重复的结果需要具备专业知识,而且工作冗长乏味。但是,现在有一种方法可以克服这些挑战,通过加快这种分析来提取图像的真正价值并获得深入的认识。人工智能驱动的像素分类器可快速提供可重复的分割结果,克服了人工操作问题。与基于功能的传统自动化相比,它可以提供更可靠的结果。

在显微成像和图像分析中运用人工智能和机器学习技术

Emma Lundberg 教授是瑞典 KTH 皇家理工学院细胞生物学蛋白质组学教授。她还是细胞图谱项目的总监,该项目是瑞典人类蛋白质图谱(HPA)项目不可或缺的组成部分,后者是用于研究人类蛋白质组的开源资源。细胞图谱项目是 HPA 的一部分,提供人类细胞系中 RNA 和蛋白质的表达及时空分布的高分辨率图像。Lundberg…

在显微图像分析中运用机器学习技术

显微成像技术最近取得了令人振奋的进展,因此,在生物医学研究中采集的图像数据无论质量还是数量都呈指数级增长。但是,分析日益复杂的大型图像数据集以提取有意义的信息可能是一个既枯燥又耗时的过程,而且容易出现人为误差和偏差,这经常给许多研究人员造成生产效率瓶颈。
H&E stained micrograph of an intramucosal esophageal adenocarcinoma (left) enhanced with Aivia’s Pixel Classifier (right)

简化癌症生物学图像分析工作流

随着癌症生物学数据集的不断增长,显微图像分割和定量也越来越具挑战性,研究人员被迫在分析工作中耗费大量的时间。
Single timepoint of a time-lapse recording of mammary epithelial micro spheroid cultured in 3D highlighting individual mitotic events

在不同尺度下观察复杂的细胞相互作用

细胞间的相互作用很难观察,其中涉及的目标检测和关系衡量尤为棘手。没有简单易用的目标检测及其关系测量方法,很难观察到细胞间的相互作用。
Aivia_Neuroscience-VBE comparison mouse-1_traced_ROI

自动化加速神经元图像分析

复杂神经投射的检测能力主要取决于大规模神经元网络的精确重建。神经科学研究中的大多数数据析取方法都非常耗时和易错,进而导致进度延误和错误。在本次研讨会中,Aivia将演示如何利用自动化技术提升图像分析工作流的效率
Scroll to top