MICA
产品
首页
Leica Microsystems
MICA 全场景显微成像分析平台
它将改变一切。
阅读我们的最新文章
探索微生物世界:三维食品基质中的空间相互作用
Micalis 研究所是与 INRAE、AgroParisTech 和巴黎萨克雷大学合作的联合研究单位。其使命是开发食品微生物学领域的创新研究,以促进健康。在这一系列视频中,Micalis…
通过子宫内膜类器官推进子宫再生疗法
姜教授的团队研究决定胚胎植入和妊娠成功维持的子宫微环境的重要因素。他们正在开发新的治疗策略,以再生子宫内膜功能,帮助患有子宫内膜疾病(如阿什曼综合症)的患者。她的团队将 3D 子宫内膜类器官移植到小鼠模型中,以识别子宫的显著再生能力背后的细胞和分子机制。从这次访谈中了解她的团队正在进行什么样的研究,以及Mica是如何提供帮助的。
在神经发育过程中,细胞是如何相互交流的?
细胞间通信是大脑发育过程中一个必不可少的过程,它受到多种因素的影响,包括细胞的形态、粘附分子、局部细胞外基质和分泌囊泡。在本次网络研讨会上,您将了解到对这些机制更深入的理解是如何推动对神经发育障碍的理解的。
How to Streamline Your Histology Workflows
Streamline your histology workflows. The unique Fluosync detection method embedded into Mica enables high-res RGB color imaging in one shot.
如何深入了解类器官和细胞球模型
在本电子书中,您将了解3D细胞培养模型(如类器官和细胞球)成像的关键注意事项。探索创新型显微镜解决方案,来实时记录类器官和细胞球的动态成像过程。
落射荧光显微镜和反射对比显微镜
多年来,荧光显微镜一直仅使用透射光和暗场照明。随着时间的推移,对改进照明的需求不断增长,这导致了落射照明(也称为入射光照明)的发展。经过 40 年的发展和改进,落射照明荧光显微镜已成为生命科学、临床医学诊断和材料科学领域常规实验室工作和研究的实用方法。大部分开发工作由 Ploem 集团和 Leitz 公司(现为 Leica Microsystems)完成。
荧光蛋白简介
本文概述了荧光蛋白及其光谱特性。随着 20 世纪 50 年代末荧光蛋白的发现,荧光显微技术发生了巨大变化。它始于 O. Shimomura 和来自水母(Aequorea victoria)的绿色荧光蛋白(GFP)[1]。后来出现了数百种 GFP…
检查癌症类器官的发展进程
德国慕尼黑工业大学的Andreas Bausch实验室研究细胞和生物体中不同结构和功能形成的细胞和生物物理机制。他的团队设计了新的策略、方法和分析工具,以量化微米和纳米等级的发展机制和动态过程。关键研究领域包括干细胞和类器官,从乳腺类器官到胰腺癌类器官,以更好地了解疾病模型。
荧光入门介绍
荧光是George Gabriel Stokes于1852年首次报道的一种现象。他观察到萤石在紫外线照射后开始发光。荧光是光致发光的一种形式,是指一种材料被光照射后会发射出光子。发射光的波长比激发光更长。这种效应又称为斯托克斯位移。
如何利用单个系统对组织学荧光样品进行成像
在本集MicaCame中,主持人Lynne Turnbull和Patric Pelzer将带您探寻生物样本染色的历史之旅。他们将解释为什么您通常必须选择为组织学样品或荧光样品选择特定的系统,以及如何利用新的成像技术克服这一点。
如何从根本上简化成像设备的工作流程
本集MicaCam中,来自伦敦大学学院(UCL)的特邀嘉宾Christopher Thrasivoulou博士将从成像设备的角度讨论使用Mica的优势。他将讨论如何简化复杂生物系统的成像工作流程并实现自动化。这有助于科学家节省为获取有意义的量化分析结果而投入的时间和精力。为了举例说明此类工作流程,他还会展示如何对荧光标记的固定斑马鱼胚胎进行多色成像。
FLUOSYNC - 一种快速而温和的多色光谱拆分成像方法
在本白皮书中,我们重点介绍如何使用一种快速、可靠的方法在荧光显微镜下获得高质量多通道图像。FluoSync 将现有的光谱混合拆分方法与同步采集多个光谱探测范围相结合,一步到位。这样,多个荧光团可同时成像,而且无需担心荧光串扰、滤光片的选择或在高速成像下损失重要光子的问题。从样本中获得真正的信号从未如此容易。
利用微流控技术保持活细胞成像期间的细胞健康
点播视频——在这集MicaCam中,我们将使用微流控技术探索对细胞形态的剪切应力,检查3D细胞培养期间营养物质补充对细胞生长的影响,并观察长期培养期间球状体的发育。
如何进行动态多色延时成像
本文将举例说明 Mica 进行动态活细胞成像的能力。活细胞成像揭示了各种细胞事件。由于其中许多事件具有快速动态性,显微镜成像系统必须足够快才能记录下每一个细节。这种成像系统的一个主要优势是能够同时捕获多个荧光成像通道,以精确地显示它们的时空相关性。
关注星形孢菌素诱导细胞凋亡过程中的多个事件
用于研究细胞凋亡或程序性细胞死亡的市售试剂盒用于测量化学品或潜力新药的毒性。本期MicaCam中,我们将呈现如何通过在细胞凋亡试剂盒添加额外标记物,显著增加研究人员从同一实验中获得的信息量。在延时成像期间同时捕捉所有标记物,可以对星形孢菌素诱导细胞死亡过程中多个事件的精确顺序进行定量分析。
高尔基组织对细胞应激的反应变化
在本集MicaCam直播活动中,来自海德堡欧洲分子生物学实验室的特邀嘉宾George Galea将对用各类化疗药物进行治疗的HeLa Kyoto细胞进行分析,并观察其对高尔基复合体和细胞核的组织和定位的影响。
复杂3D数据集——人工智能赋能的空间数据分析
本期MicaCam为您提供切实的建议,教您从显微镜图像中提取可发表级别的分析结果。本期的特邀嘉宾来自徕卡显微系统的Luciano Lucas,他将为大家展示如何使用MICA的AI赋能软件进行图像分析。他将深度分析两张MICA的3D成像,探究不同可见生物元素之间的空间关系。本期的最后将会介绍如何创作高保真视频动画以及其他可用于发表文章的结果。
3D组织成像:快速预览到高分辨率成像的一键切换
3D组织成像广泛应用于生命科学领域。研究人员利用它来揭示组织组成和完整性的详细信息,或从实验操作中得出结论,或比较健康与不健康的样本。本文介绍了MICA如何帮助研究人员进行3D组织成像。
如何实现快速、稳定的多色活细胞成像
研究人员在活细胞成像技术的帮助下,可以深入了解活细胞甚至完整生物体的动态过程,这包括细胞内和细胞外活动。一些代表性的示例包括蛋白质或脂质转运、免疫细胞迁移,类器官的细胞组织等。活细胞成像要求样本和显微镜系统具备特定的属性。在这篇文章中,我们描述了MICA对这些先决条件的具体调整,并提供了合适的示例。
斑马鱼心脏损伤后心肌细胞增殖现象
本期MicaCam聚焦于斑马鱼相关研究(斑马鱼)。不同于其他哺乳动物的心脏细胞,斑马鱼的心脏细胞能够在受损之后完全再生。
细胞骨架如何运输分子?
MicaCam是生命科学研究人员聚集在一起现场聊天、互动沟通和探索发现的地方。欢迎您在直播中分享问题,参与互动。
研究斑马鱼胚胎的早期发育阶段
第2集MicaCam的内容是结合宽场和共聚焦成像来研究斑马鱼胚胎(Danio rerio)的早期发育阶段,即从卵细胞到多细胞阶段。
用MICA完成Caspase 3/7多色检测
Caspases与细胞凋亡过程相关,因此可以利用caspase检测来确定细胞是否正在经历这种程序化的细胞死亡。这些检测可以通过例如流式细胞仪、平板读数仪实现,也可以在显微镜上完成,显微镜可为量化数据补充可见的结构信息。在这篇文章中,我们描述了MICA是如何用于caspase 3/7测定。借助Navigator或像素分类器等工具,MICA让设置、执行和分析caspase…
如何获得具有完全时空相关性的多标记实验数据
首期MicaCam会聚焦于活细胞实验当中的挑战。我们的主持人Lynne Turnbull和Oliver Schlicker将以活细胞内线粒体活动研究为例,手把手为您展示如何用多孔板培养箱设计您的实验,以及如何分析结果。
简化复杂的荧光多孔板检测方法
细胞凋亡或程序性细胞死亡发生在生物体胚胎发育过程中以消除不需要的细胞,或者发生在成年人的愈合过程中,以消除身体的受损细胞,帮助预防癌症。用多孔板进行的Caspase检测实验使研究人员能够研究细胞凋亡的早期阶段。在这篇文章中,我们展示了MICA如何与荧光多孔板测定一起应用,以提供100%时空相关性的数据,并将串扰降至最低。
高效的长期延时拍摄技术
当对球状体做延时拍摄技术时,会出现某些挑战。由于实验可能持续数天,必须实现长时间的样本存活,这就需要确保接近生理条件。本文描述的长期延时研究使用了全场景显微成像分析平台MICA来研究U343和MDCK细胞球形成。细胞球生长需要最佳条件,以确保细胞周期和增殖不受干扰。
如何为免疫荧光显微镜制备样本
免疫荧光(IF)是一种用于可视化观察细胞内过程、状态和结构的强大工具。IF制剂可通过多种显微镜技术(如激光共聚焦、宽场荧光、全内反射成像等)来加以分析,具体取决于应用目的或研究人员的关注重点。与此同时,在很多使用至少一套简易荧光显微镜的研究工作组当中,IF早已成为不可缺少的一部分。
荧光活细胞成像技术
理解复杂和/或快速的细胞动力学是探索生物过程的重要一步。因此,如今的生命科学研究越来越关注动态过程,例如细胞迁移,细胞、器官或整个动物的形态变化,以及活体样本中的实时生理事件(如细胞内离子成分的变化)。
满足此类高难度需求的一种方法是采用某些统称为活细胞成像的光学方法。
荧光染料
荧光显微镜的基本原理是借助荧光染料对细胞成分进行高度特异性的可视化观察。这可能是一种与兴趣蛋白质遗传相关的荧光蛋白,如绿色荧光蛋白(GFP)等。如果克隆无法实现,例如在组织学样本上无法实现,则需要使用另一种技术如免疫荧光染色来对兴趣蛋白质进行可视化观察。为此,人们使用抗体来连接不同的荧光染料并将其直接或间接地结合到适当的靶点上。此外,借助荧光染料,荧光显微镜的应用就不再仅局限于蛋白质观察,还能对核…
多色显微成像:多通道的重要性
多通道一词是指使用多种荧光染料来检查一个样本中的不同元素。多通道成像可以同时观察相关组分和过程,从而为您的观察添加更多背景信息,最终提供更有意义的结果。它还有助于观察采用其他方法可能会遗漏的相互依赖性。
多通道活细胞成像注意事项
同时多色成像,确保实验成功:活细胞成像实验是了解动态过程的关键。这类实验使我们能够观察记录活体状态下的细胞,而不会可能因固定或终止不同活体过程而产生干扰性伪影。
便捷高效的多色成像新方法
之所以开发将高光谱拆分与相量分析相结合的技术,是为了简化从用多个荧光团标记的样本中采集图像的过程。这种组合方法可消除多通道成像中常见的障碍,例如荧光团串扰和低效的每种信号依次成像(这两种情况都可能导致丢失信息)。此外,它还有助于改进图像采集和数据生成,从而提高实验效率。
在显微图像分析中运用机器学习技术
显微成像技术最近取得了令人振奋的进展,因此,在生物医学研究中采集的图像数据无论质量还是数量都呈指数级增长。但是,分析日益复杂的大型图像数据集以提取有意义的信息可能是一个既枯燥又耗时的过程,而且容易出现人为误差和偏差,这经常给许多研究人员造成生产效率瓶颈。
在显微成像和图像分析中运用人工智能和机器学习技术
Emma Lundberg 教授是瑞典 KTH 皇家理工学院细胞生物学蛋白质组学教授。她还是细胞图谱项目的总监,该项目是瑞典人类蛋白质图谱(HPA)项目不可或缺的组成部分,后者是用于研究人类蛋白质组的开源资源。细胞图谱项目是 HPA 的一部分,提供人类细胞系中 RNA 和蛋白质的表达及时空分布的高分辨率图像。Lundberg…
人工智能驱动的像素分类器
通过人工操作获得可重复的结果需要具备专业知识,而且工作冗长乏味。但是,现在有一种方法可以克服这些挑战,通过加快这种分析来提取图像的真正价值并获得深入的认识。人工智能驱动的像素分类器可快速提供可重复的分割结果,克服了人工操作问题。与基于功能的传统自动化相比,它可以提供更可靠的结果。
神经科学图像
神经科学通常使用显微镜来研究神经系统的功能和了解神经退行性疾病。
宽场显微镜简介
‘宽场显微镜’是最基本的显微镜技术之一。其根本上是将整个感兴趣的样本暴露于光源下,由观察者或摄像头(也可连接到计算机显示器)获得图像的技术。
2013年诺贝尔生理学或医学奖:囊泡运输调控机制的发现
2013年10月7日,卡罗林斯卡学院诺贝尔组织决定共同授予詹姆斯·E·罗斯曼、兰迪·W·舍克曼和托马斯·C·苏德霍夫2012年诺贝尔生理学或医学奖,以表彰他们“发现了调控囊泡运输的机制,这是细胞内的一个重要运输系统”。
2012年诺贝尔生理学或医学奖——干细胞研究
诺贝尔奖表彰了这两位科学家,他们发现成熟、分化的细胞可以被重编程为能够发育成身体所有组织的未成熟具有干性的细胞。他们的发现彻底改变了我们对细胞和生物体发育过程的理解。
活细胞成像简介
了解复杂且快速变化的细胞动力学是深入探索生物进程的重要一步。因此,现代生命科学研究越来越需要关注于在分子水平上实时发生的生理事件。
应用的领域
荧光
荧光是生物和分析显微镜中最常用的物理现象之一,主要是因为它具有灵敏度高、特异性强的特点。荧光是冷发光的一种形式。用户可以通过显微镜来捕捉单个荧光分子的种类、分布、数量及其在细胞内的定位。用户可以进行荧光分子共定位和相互作用的研究,也可以观察在细胞内和细胞间运作离子浓度的变化,如胞吞和胞吐。借助超高分辨显微镜,我们甚至可以对亚细胞器的结构进行成像。
细胞生物学
如果您的研究重点是探究人类健康和疾病相关的细胞学基础,那么从时空和分子层面详细研究感兴趣的细胞至关重要。 因此,显微成像是细胞生物学中一个非常重要的工具,它让您能够在样本的结构环境中详细研究样本,也可以分析细胞器和大分子。 细胞生物学成像是运用一系列的光学显微镜和电子显微镜完成的。 徕卡显微系统公司推出的成像解决方案专为扩展您的细胞生物学研究而设计。
癌症研究
癌症是一种复杂的异质性疾病,由于细胞生长失控而引起。 一个或一组细胞的基因和表观遗传的变化破坏了正常功能,导致细胞自发、不受控制地生长和增殖。
活细胞成像
将视角从单一的显微镜组件转向完整的活细胞成像解决方案,徕卡公司将显微镜、LAS X 成像软件、相机和第三方专用组件集成在一起,形成一个完整的活细胞成像系统。
类器官和3D细胞培养
生命科学研究中最令人振奋的最新进展之一是3D细胞培养系统的发展,例如类器官、球状体或器官芯片模型。 3D细胞培养物是一种人工环境,在这种环境中,细胞能够在三维空间中生长并与周围环境相互作用。 这些环境条件与它们在体内的情况相似。
模式生物研究
模式生物是研究人员用来研究特定生物学过程的物种。 它们具有与人类相似的遗传特征,通常用于遗传学、发育生物学和神经科学等研究领域。 选择模式生物的原因通常是它们在实验室环境中易于保持和繁殖、生成周期短,或能够产生突变体来研究某些性状或疾病。
神经科学研究解决方案
您的工作是更好地了解神经退行性疾病,还是研究神经系统的功能? 了解如何使用徕卡显微系统的成像解决方案取得突破。