THUNDER Imager Cell Spinning Disk系统

通过协同作用提高清晰度

阅读我们的最新文章

Boston Innovation Hub

Boston and San Francisco Innovation Hubs

The Boston and San Francisco Innovation Hubs are here to help you advance scientific discovery. We provide academic and industrial researchers access to state-of-the-art microscope technology and…
Image: Human stem cell-derived mid brain organoids. Courtesy of Dr Tanya Singh, University of Oxford.

揭开类器官模型在生物医学研究中的秘密

准备深入了解类器官和3D培养物的世界,它们是促进我们了解人类健康的重要工具。浏览这些复杂的结构并获取清晰的图像进行分析是一项挑战。在本次活动中,来自牛津大学和伦敦大学学院的研究人员将与我们一起展示Thunder Imager Cell转盘共聚焦系统 如何提供更有说服力的高质量数据,以便深入了解各种模型。
微管蛋白的 TIRF 图像,YFP 标记,穿透深度:120 毫米

全内反射荧光显微镜(total internal reflection fluorescent microscope,TIRFM)在生命科学研究中的应用

全内反射荧光显微镜的独特之处在于利用衰逝波激发荧光团。与传统的弧光灯、LED 或激光宽场荧光照明方式不同,衰逝波仅能从盖玻片/介质界面开始穿透样本约 100 纳米深度。
表达 GFP 标记的细胞粘附分子 CD44 的乳腺癌肿瘤细胞的 TIRF 图像,该分子位于细胞膜上,通过 TIRF 成像。

全内反射荧光(total internal reflection fluorescent microscope,TIRF)显微镜

全内反射荧光(TIRF)是荧光显微镜技术中的一项特殊技术,由密歇根大学安娜堡分校的 Daniel Axelrod 于 1980 年代初开发。TIRF 显微镜能提供轴向分辨率低于 100 纳米的超高清晰图像,这使得观察膜相关过程成为可能。

应用领域

类器官和3D细胞培养

生命科学研究中最令人振奋的最新进展之一是3D细胞培养系统的发展,例如类器官、球状体或器官芯片模型。 3D细胞培养物是一种人工环境,在这种环境中,细胞能够在三维空间中生长并与周围环境相互作用。 这些环境条件与它们在体内的情况相似。

THUNDER Imaging Systems

为了解答重要的科研问题,这些系统甚至能深入原始样品中实时呈现清晰的细节,不会产生任何离焦模糊。现如今,为3D样品进行清晰成像就像使用您最喜爱的摄像头荧光显微镜一样简单。采用 Computational Clearing 的 THUNDER 定义了一类全新的仪器,可对厚三维样品进行高速、高品质成像。
Scroll to top