Cell DIVE
复合光学显微镜
产品
首页
Leica Microsystems
Cell DIVE 超多标组织成像分析整体解决方案
用开放的超多标成像解决方案彻底改变组织研究工作。
阅读我们的最新文章
Mapping Tumor Immune Landscape with AI-Powered Spatial Proteomics
Spatial mapping of untreated tumors provides an overview of the tumor immune architecture, useful for understanding therapeutic responses. Immunocompetent murine models are essential for identifying…
Spatial Analysis of Neuroimmune Interactions in Alzheimer’s Disease
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by neurofibrillary tangles, β-amyloid plaques, and neuroinflammation. These dysfunctions trigger or are exacerbated by…
A Guide to Spatial Biology
What is spatial biology, and how can researchers leverage its tools to meet the growing demands of biological questions in the post-omics era? This article provides a brief overview of spatial biology…
使用空间多重化探测人类阿尔茨海默病皮层切片
阿尔茨海默病(AD)是最常见的神经退行性疾病,其特征是认知功能的逐渐下降。对 AD 大脑的空间分析可能揭示细胞关系,从而促进对疾病病因的更好理解。本研究捕捉了 AD 皮层组织成分的全球概述,并强调了 Cell DIVE 成像的简化工作流程,从数据采集到使用 Aivia 软件的基于人工智能的分析,最终实现更快的洞察。
Cell DIVE开放式超多重免疫荧光成像如何赋能空间生物学
空间生物学和多重成像工作流程在免疫肿瘤学研究中变得越来越重要。许多研究人员即使使用有效的工具和方案,也很难提高研究效率。我们将介绍研究人员如何利用开放式超多重免疫荧光的适应性,将 IBEX 成像与Cell DIVE 相结合,创造了一种名为 Cell DIVE-IBEX 的技术。它让这些研究人员能够调整现有的技术和试剂,并获得Cell DIVE 在其免疫肿瘤学研究中的可扩展性。
利用AI驱动的多重图像分析探索结肠腺癌
在这项研究中,我们展示了一种利用Cell DIVE和AIVIA软件的空间生物学工作流程,以绘制结肠腺癌中的肿瘤免疫景观图。
肿瘤空间微环境的元癌症分析
研究 TME中肿瘤、基质和免疫细胞之间的相互作用需要采用超多重免疫荧光成像方法。在这里,我们分析了一组Cell Signaling Technology(CST®)抗体,这些抗体针对肺癌、结肠癌和胰腺癌等癌症的标志物。通过Cell DIVE成像和Aivia中的聚类分析,我们确定了TME中的空间相互作用,包括组织特异性和共有的相互作用。
通过成像和AI绘制结直肠癌的景观
结肠癌是一种高负担疾病。尽管进行了化疗干预和手术切除,但疾病可能会复发。了解结肠癌微环境对于改善治疗效果是必要的。在这里,我们使用空间生物学方法,通过Cell DIVE和 Aivia可视化结肠腺癌组织中的30个生物标志物。我们探讨了肿瘤组织的血管化、免疫细胞反应和细胞增殖。
肿瘤组织中肿瘤和免疫细胞的空间结构
免疫检查点阻断(ICB)疗法在许多癌症中具有临床益处,但一些患者并无反应。最佳的治疗组合可能受到肿瘤内存在的免疫抑制机制的影响。
IBEX、Cell DIVE 和 RNA-Seq:一种针对滤泡性淋巴瘤的多组学方法
在拉德特克等人最近的一项研究中,多组学空间生物学方法有助于揭示早期复发淋巴瘤患者的病情。
加速不同组织多重成像的发现
组织的多重成像对于肿瘤-免疫相互作用的研究以及人类细胞图谱等发现工作越来越重要。 欢迎加入我们的演讲,Andrea J. Radtke 博士解释了如何使用迭代漂白扩展多重性 (IBEX) 绘制组织图谱,并讨论了用于多重成像的广泛社区资源。
Transforming Multiplexed 2D Data into Spatial Insights Guided by AI
Aivia 13 handles large 2D images and enables researchers to obtain deep insights into microenvironment surrounding their phenotypes with millions of detected objects and automatic clustering up to 30…
利用蛋白质标记成像了解肿瘤异质性
Alison Cheung博士展示了如何利用蛋白质多重成像技术为癌症研究提供定量见解,与她一起探索肿瘤异质性和免疫细胞动态。
大脑的形状:阿尔茨海默病的空间生物学
阿尔茨海默病(AD)是一种神经退行性疾病,也是导致晚年认知障碍的常见原因。阿尔茨海默病的特征是出现含β-淀粉样蛋白的斑块和含磷酸化 tau 的神经纤维缠结。目前尚缺乏治疗和预防AD的有效疗法。我们将Cell DIVE与Cell Signaling Technology的抗体结合使用,检查了AD的突触过程并从空间上确定了神经胶质细胞和神经元等细胞,证明了超多标免疫荧光成像技术可用于探测AD大脑。
肝细胞癌中癌症干细胞位点的原位鉴定
在这里,我们探索了一种突破性的多重免疫检测方法,通过多重成像对细胞外基质(ECM)特征进行原位定位,从而识别肝细胞癌(HCC)内的癌症干细胞龛。
探索多重生物成像如何推进癌症研究
观看行业和学术专家进行的内容丰富的讨论,分享他们在研究中使用多重成像技术的知识。了解多重成像技术如何通过发现以前难以捉摸的分子洞察力,彻底改变肿瘤学、神经学和免疫学。利用先进的成像技术深入了解组织微环境,从而对代谢紊乱和癌症等疾病有新的认识。
与卢克-加蒙(Luke Gammon)一起多重成像:推进您的空间生物学研究
多重成像是一种功能强大的技术,可让研究人员同时观察单个样本中的多个目标。这对于研究复杂的生物系统尤为重要,可以帮助研究人员更好地了解不同分子和途径之间是如何相互作用的。
空间生物学: 解析全景
空间生物学:了解分子、细胞和组织在原生空间环境中的组织和相互作用
在空间生物学研究中提高可重复性的方法
利用自动化、高质量抗体以及经验证的多重成像工作流程,Cell DIVE能够提供可重复的实验结果。
表征肿瘤环境以揭示洞察和空间分辨率
肿瘤环境的表征可以为癌症进展和潜在治疗靶点提供更深入的见解。我们已经使用来自Cell Signaling Technology(CST)的各种IHC验证抗体,在胰腺癌的Cell DIVE研究中验证了30多种偶联抗体。
借助多重成像深入了解胰腺癌的复杂性
胰腺癌是一种很难治疗的肿瘤疾病。Cell DIVE多重成像可以视觉呈现30种生物标志物以探测胰管癌的微环境。此面板可以检查肿瘤组织多个层级的问题,包括淋巴细胞、血管新生、转移、侵袭、炎症、缺氧、代谢和免疫。多重成像和分析可以对肿瘤组织中的许多生物活动提供更为深入的洞察信息,从而可以深入研究这些信息。
显微镜如何应用在空间生物学中?一份显微镜指南
本电子书旨在探索显微镜中的关键空间生物学方法,例如多重成像技术,这个方法有助于将独立的细胞信息放入空间环境来分析。
化繁为简:多重成像中的抗体
了解抗体对于多重成像研究的重要意义,以及如何规划并建立自己的抗体组合
多重成像的类型、优势和应用
与传统显微镜相比,多重成像技术能观察到更多的生物标记物,是一种新兴的、令人兴奋的从人体组织样本中提取信息的方法。通过同时观察多种生物标记物,可以协同探索以前只能单独探索的生物通路,并识别和探测复杂的组织和细胞表型。目前已有许多不同的多重成像方法,每种方法都采用不同的方法来实现更高的复杂性。
利用Cell DIVE 在单细胞水平上进行超复杂癌症组织分析
能够研究淋巴瘤细胞的异质性如何受到细胞对其微环境反应的影响,尤其是在突变、转录组和蛋白质水平上。蛋白质表达研究提供了有关细胞相互作用性质和蛋白质表达水平的最相关信息。超复合工作流程可用于研究同一癌症组织中的多种蛋白质。
利用多重中频成像设计您的研究课题
多重组织分析是一种功能强大的技术,可对单个固定组织样本中的细胞类型位置和细胞类型相互作用进行比较。在多重分析研究开始之前,研究人员通常会提出以下问题: "我如何知道组织中哪些生物标记物是相关的?另外,随着研究问题的发展,我如何转向其他生物标记物?巧妙的研究设计有助于回答现有的问题,并能继续探索研究开始时并不明显的新联系。
Cell DIVE已验证的抗体将使您对实验结果产生信心
Cell DIVE超多标组织成像分析整体解决方案包括经严格验证的350+抗体资源库,高灵敏度高特异性的应用于Cell DIVE循环染色成像中。抗体验证的方法可以帮助您找到合适的抗体以及最佳的实验条件,快速的让您开展超多标成像分析的实验。抗体库中的每种抗体都经过严格的三步验证过程,(a)评估在FFPE上的表现性能;(b)确定其最佳的染色条件以及是否可用作直标抗体;(c)探究由于Cell…
应用的领域
癌症研究
癌症是一种复杂的异质性疾病,由于细胞生长失控而引起。 一个或一组细胞的基因和表观遗传的变化破坏了正常功能,导致细胞自发、不受控制地生长和增殖。